updated openlamb to read data online or from csv files

This commit is contained in:
putro 2020-04-12 14:08:38 +02:00
parent a792294d4c
commit df4010a2cf
2 changed files with 105 additions and 43 deletions

16
README
View File

@ -26,9 +26,19 @@ sensori_aria_2017.zip - 13M
sensori_aria_2018.zip - 13M
sensori_aria_2019.zip - 13M
per visualizzarne i dati e' necessario scaricare l'intero file e processarlo.
per visualizzarne i dati e' necessario scaricare l'intero file.
Quindi per l'analisi dei dati recenti e' piu' comodo lavorare con i dataset, per analisi storiche invece bisogna usare i csv
openlamb usa i dataset,
in futuro ci sara' una versione che lavorera' con i csv
i csv vanno scaricati manualmente (per ora) e messi nella cartella csv o in una cartella a scelta modificando il percorso specificato nel file openlamb.py
sintassi:
python openlamb.py --dataset 2018 2019 --sensori 6956 10320
mostra i grafico per il dataset degli anni 2018 e 2019 per i sensori indicati
python openlamb.py --csv 2018.csv 2019.csv --sensori 6956 10320
mostra i grafico dei dati contenuti nei file 2018.csv e 2019.csv per i sensori indicati
python openlamb.py --dataset 2019 --csv 2019.csv --sensori 6956
mostra il grafico del confronto dei dati nel dataset e nel file csv per il sensore indicato

View File

@ -1,15 +1,17 @@
#!/usr/bin/env python
# pylint: skip-file
import argparse
import traceback
import sys
import subprocess
import pandas as pd
import numpy as np
from sodapy import Socrata
import matplotlib.pyplot as plt
import glob
import os
from os import getcwd, chdir
path_to_csv_files = "csv/"
datasets_ambiente = {"2020": "nicp-bhqi",
"2019": "kujm-kavy",
@ -21,76 +23,125 @@ def _connect():
client = Socrata("www.dati.lombardia.it", None)
return client
def process_dataset(dataset, sensore):
def read_data_online(dataset, sensore):
client = _connect()
results = client.get(dataset, IdSensore=sensore)
return client.get(dataset, IdSensore=sensore)
def read_data_from_csv(datafile):
return pd.read_csv("csv/" + datafile, usecols=['IdSensore', 'Data', 'Valore', 'Stato', 'idOperatore'])
def process(dati, sensore, csv):
""" processa i dati per un sensore da un dataset o un file csv e restituisce un dataframe """
print('Sto processando i dati del sensore %s per l\'origine dati %s...' % (sensore, dati))
if csv:
results = read_data_from_csv(dati)
else:
results = read_data_online(dati, sensore)
results_df = pd.DataFrame.from_records(results)
results_df.columns = [x.lower() for x in results_df.columns]
try:
results_df = results_df.astype({'idsensore': 'int64'})
results_df = results_df[results_df['idsensore'] == int(sensore)]
results_df = results_df.astype({'valore': 'float64'})
except:
print('\nspiacente, dati non disponibili per il sensore %s') % sensore
sys.exit(-1)
results_df["data"] = pd.to_datetime(results_df["data"])
results_df = results_df.replace(-9999, np.nan)
except:
print('\nERRORE: dati non disponibili per il sensore %s\n') % sensore
traceback.print_exc()
sys.exit(-1)
results_df.sort_values(by=['data'], inplace=True)
results_df.rename(columns={'valore': sensore}, inplace=True)
results_df.drop(columns=['idoperatore', 'idsensore', 'stato'], inplace = True)
results_df.drop(columns=['idoperatore', 'idsensore', 'stato'],
inplace=True)
return results_df
def merge_df(dataframes, sensori):
""" fonde diversi dataframes in un dataframe unico con un sensore per colonna """
df = dataframes[sensori[0]]
for sensore in sensori[1:]:
df = pd.merge(df, dataframes[sensore])
return df
def get_dataframes(datasets, sensori):
def get_dataframes(dati_csv, dati, sensori):
""" salva in un dict i dataframes dei vari sensori richiesti """
dataframes = {}
for sensore in sensori:
df = process_dataset(datasets[0], sensore)
for dataset in datasets[1:]:
df = pd.concat([df, process_dataset(dataset, sensore)], axis=0)
if dati_csv:
df = process(dati_csv[0], sensore, True)
for d in dati_csv[1:]:
df = pd.concat([df, process(d, sensore, True)], axis=0)
df.rename(columns={sensore: sensore + "-csv"}, inplace=True)
dataframes[sensore + "-csv"] = df
if dati:
df = process(dati[0], sensore, False)
for d in dati[1:]:
df = pd.concat([df, process(d, sensore, False)], axis=0)
dataframes[sensore] = df
return dataframes
def plot_dataframe(dataframe):
dataframe.plot(x='data')
plt.axhline(y=50, color='black', linestyle='-', label='24-hour average EU limit')
plt.axhline(y=50, color='black', linestyle='-', label='EU limit')
plt.show()
def main():
def list_of_csv_files(dir_name):
saved = getcwd()
os.chdir(dir_name)
filelist = glob.glob('*.csv')
chdir(saved)
return filelist
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", nargs='+', required=True, help="ricerca dei datasets")
parser.add_argument('--sensori', nargs='+', required=True, help="specifica i sensori")
parser.add_argument("--dataset", nargs='+', required=False,
help="ricerca dei datasets")
parser.add_argument("--csv", nargs='+', required=False,
help="ricerca nei files csv")
parser.add_argument('--sensori', nargs='+', required=True,
help="cerca i dati di questi sensori")
args = parser.parse_args()
try:
datasets = []
dati_csv = []
csv_files = list_of_csv_files(path_to_csv_files)
if args.csv:
if "all" in args.csv:
dati_csv = csv_files
else:
for d in args.csv:
if d in csv_files:
dati_csv.append(d)
else:
print("spiacente, ma il file csv %s non e' disponibile nel "
"percorso indicato: %s" % (d, path_to_csv_files))
sys.exit(-1)
dati = []
if args.dataset:
if "all" in args.dataset:
for k in datasets_ambiente.keys():
datasets.append(datasets_ambiente[k])
dati.append(datasets_ambiente[k])
else:
for d in args.dataset:
datasets.append(datasets_ambiente[d])
sensori = args.sensori
dataframes = get_dataframes(datasets, sensori)
datamerged = merge_df(dataframes, sensori)
dati.append(datasets_ambiente[d])
dataframes = get_dataframes(dati_csv, dati, args.sensori)
datamerged = merge_df(dataframes, dataframes.keys())
import stazioni
s = stazioni.get_stazioni()
for sensore in sensori:
location = s.loc[s['idsensore'] == sensore, 'nomestazione'].iloc[0]
for sensore in datamerged.columns[1:]:
print(sensore)
location = s.loc[s['idsensore'] == sensore.split("-")[0], 'nomestazione'].iloc[0]
print('Valore medio per il sensore %s %s: %s' % (sensore, location, datamerged[sensore].mean().round(1)))
plot_dataframe(datamerged)
except KeyError:
print("\nErrore:")
#print("Datasets disponibili:")
#print('\n'.join([str(lst) for lst in sorted(datasets_ambiente.keys())]))
print("\nKeyError: forse hai specificato un dataset che non esiste ?")
traceback.print_exc()
except KeyboardInterrupt:
print("program terminated by user")
@ -102,5 +153,6 @@ def main():
print("\nReport this to putro@autistici.org")
sys.exit()
if __name__ == '__main__':
main()